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The distribution of displacements in a fluid of hard disks is found by 
molecular dynamics to be non-Gaussian in the long-time limit, as surmised 
from the moments of the distribution that yield divergent diffusion and 
Burnett coefficients. On the other hand, for the Lorentz gas of hard disks, 
the distribution of displacements is Gaussian in the long-time limit and the 
diffusion coefficient exists, though the autocorrelation functions have power 
law tails, which lead to divergent Burnett coefficients. 
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It has been established through computer studies (z) and graph theoretical 
calculations (2) that due to persistent long-time correlations the diffusion 
coefficient for a hard-disk fluid diverges. Since the diffusion coefficient is 
related to the distribution of displacements through the rate at which the 
second moment of the distribution reaches its limiting value, it becomes 
important to establish both the rate at which the displacement distribution 
approaches the limiting distribution as well as the long-time limit of the 
displacement distribution itself, so that the proper representation of the 
constitutive relations, such as Fick's law, which are free of divergences, can 
be found. The long-time limit of this distribution function has almost in- 
variably been thought to be Gaussian, through invoking the central limit 
theorem. However, the divergence of the diffusion coefficient suggests that 
the central limit theorem may not apply. The importance of understanding 
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this divergence is due to the fact that it invalidates Navier-Stokes hydro- 
dynamics and the Chapman-Enskog (3~ expansion, where the diffusion 
coefficient occurs in the lowest order term of that expansion. In three dimen- 
sions, the Chapman-Enskog expansion also fails even though the diffusion 
coefficient exists, because the Burnett coefficient, the next higher term in the 
expansion, which measures the limiting rate dependence of the fourth cumu- 
lant of the distribution of displacements, diverges. (~ In order to investigate 
the cause of these divergences, it is desirable to study also a simpler, but still 
nontrivial, system in which the hydrodynamic vortex modes, believed to be 
responsible for the nonanalytical behavior in fluids, are absent. That is the 
Lorentz model, for which the long-time limit as well as the dependence of the 
moments and the cumulants of the displacement distribution with time are 
presented. 

The Lorentz gas, in which a single particle diffuses through a set of 
randomly placed, fixed point scatterers, has a number of interesting proper- 
ties. Rigorous mathematical analysis of the Lorentz model has led to a proof 
that the system has good ergodic properties and that certain functions obey 
the central limit theorem, (~ which is consistent with the displacement dis- 
tribution being Gaussian. However, graph theoretical methods have shown (6~ 
the velocity autocorrelation function in two dimensions and in the low- 
density limit to have a power law tail of the form edit 2, where ~D is a constant 
and t is time. Abnormal diffusion has been observed in a different version 
of the Lorentz gas, called the Ehrenfest wind tree model, by computer 
simulation. (~ Thus, for even this simple model it is important to establish 
the nature of the long-time correlation and the resulting distribution of 
displacements. 

It is important to investigate the behavior of the Lorentz gas not only at 
low density but over the whole density range, because the results change 
qualitatively. This is because, at sufficiently high density of the randomly 
placed scattering points, the moving particle is trapped and consequently the 
diffusion as well as all Burnett coefficients vanish. The lowest density at 
which the diffusion coefficient vanishes is called the percolation point, which 
has been estimated (~ to be at n * =  0.37 + 0.02, where n * =  nR 2, the 
number density multiplied by the square of the radius of the moving particle. 
The percolation limit can be avoided, and order in the scattering centers can 
be introduced, by investigating the nonoverlapping Lorentz gas as opposed to 
the overlapping case discussed so far. The nonoverlapping case permits 
investigation of the role of the topology of the space on the distribution of 
displacements. That situation is generated by letting a point particle move 
through a representative configuration of a hard-particle fluid or solid, 
entirely equivalent to reversing the size of the moving particle and the 
scatterers. 
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N o t  on ly  can  the  effect o f  spa t ia l  o r d e r  on  the  d i s t r i bu t ion  o f  d isp lace-  

men t s  be  inves t iga ted ,  b u t  so can  the  effect o f  ve loc i ty  co r r e l a t i ons  as well .  

O n e  w a y  to  ach ieve  this  is to  let  the  par t i c le  be sca t t e red  diffusively,  t ha t  is 

r a n d o m l y ,  at  each  col l i s ion,  ins tead  o f  the  equa l  sca t t e r ing  ang le  cond i t i on ,  

t h e r b y  b r e a k i n g  u p  the  pers i s tence  o f  ve loc i ty .  A n o t h e r  w a y  is to  i g n o r e  the  

ve loc i ty  and  the  col l i s ions  ent i re ly ,  and  let  the  par t i c le  m o v e ,  by  the  s t a n d a r d  

M o n t e  C a r l o  (9) s amp l ing  t echn ique ,  t h r o u g h  the  fixed scat terers .  F ina l ly ,  a 

gene ra l i z a t i on  o f  a r a n d o m  wa lk  tha t  e m p l o y s  a wa i t i ng  t i m e  d i s t r i bu t i on  u~ 

to  d e t e r m i n e  a t r ans i t i on  t i m e  w h e n  a par t i c le  wil l  m a k e  a j u m p  ( c o r r e s p o n d -  

Table I. The Long-Time Behavior Represented by at B of the Velocity Auto-  
correlation Functions that  Lead to the Diffusion (D) and Burnett  (B) coeff i -  

cients of a Two-Dimensional  Lorentz Gas 

n *~ -- gz> b -- tip aBc -- fib -- fiB' 

0.736 0.888 2.11 --0.61 1.7a 2.22 
0.654 0.425 1.71 -- 0.142 1.21 1.42 
0.654 (S) 0.404 1.71 --0.42 1.21 - -  
0.477 0.192 1.404 0 - -  - -  

0.370 0.181 1.345 (0.062) (0.754) 0.689 

0.318 0.202 1.40s (0.112) (0.714) 0.788 
0.260 (N) 0.272 1.61 0.15s 0.455 - -  
0.200 0.231 1.595 0.091 0.601 0.595 
0.200 (S) 0.174 1.545 0.082 0.595 - -  
0.200 (MC) - -  - -  - -"  0.657 - -  
0.050 0.071 2.01 O.09a 1.0 a 1.01 
0.030 0.021 2.01 0.052 1.0 a 1.01 

The first two entries use 90, the last two 1968, the rest 504 particles. Runs were 5 x 107 
collisions long, except at the lowest two densities, where the velocity autocorrelation 
function results represent 4 • 108 collisions. Every 104 collisions a new random 
scattering configuration was generated. The entry marked (S) stands for diffusive 
scattering, (N) for the no overlap case, and (MC) for the Monte Carlo run. 

b The magnitude is determined by normalizing the autocorrelation function initially to 
unity and a fit of the data over a range of t from 15 to 50 mean collision times, except 
at the lowest two densities, where the range is 10-20 collisions. 

c The magnitude is determined by d2(tB)/dt 2 being divided by D02, where Do = 3v2/SF, 
where 1 TM is the collision rate, and a fit of the data over a range of times comparable to 
the diffusion data. At densities 0.370 and 0.318 the autocorrelation function changes 
at late times, of the order of several hundred mean collision times, attributed to 
boundary condition effects, since that change depends on the number of particles 
employed. The data given hence correspond to the early-time trapped particle region. 

a The uncertainty in the last significant number is given in the subscript numeral to the 
entry, except in the case where the Burnett coefficient logarithmically diverges in the 
range of 10--50 mean collision times. 
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ing to the rejections in the Monte  Carlo procedure) was tried. All these 
different computer  experiments represent an effort to find a process other than 
an ordinary r andom walk for which the cumutants might not  diverge. The 
above generalization o f  the random walk predicts that  if the velocity correla- 
t ion function decays with the power of/3D (achieved by an assumed power law 
tail for the waiting time distribution), the higher order velocity autocorrela- 
t ion function o f  the Burnett coefficient decays with the power/3~' =/3z~ + 1 
in the diffusing region and with /33 '=  2/3 D + 2 in the nondiffusing 
region. 

The results for all these problems are summarized in Table I by a long- 
time asymptotic  fit to the equation ~ota~ of  the velocity autocorrelat ion 
function l ( d 2 / d t 2 ) ( A x 2 )  whose integral is the diffusion coefficient, and the 
equation %tB~ of  the autocorrelat ion function (1/24)(d2/dt2)[(Ax) 4 -- 3(Ax2) 2] 
whose integral is the Burnett coefficient, where Ax is the displacement o f  a 
particle in time t and a and fi are constants. The two lowest density results 
are consistent with the theoretical prediction o f  a power law decay of  
fl~ = - 2  for the velocity autocorrelat ion function, but the magnitude o f  the 
coefficient an,  which should be n*/rr, is closer to n* at both  densities. Unless 
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Fig. l. The low-density velocity autocorrelation function for the Lorentz gas as a 
function of mean collision time s. The deviation of the velocity autocorrelation function 
p(s), normalized so that p(0) = 1, from an exponential po(s) = exp(-4s/3), that is, 
- [p(s) - po(s)]s2/n *, is plotted at n* = 0.05. The circles, representing the present run 
of about 4 x 108 collisions, are compared to an earlier run ~11~ (triangles) in which the 
average of four low densities is represented for a total of 108 collisions. The dashed line 
represents the low-density theoretical prediction. 
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there is a drastic change of  this coefficient at still lower densities, this indicates, 
as shown in Fig. 1, some theoretical deficiency. 

The negative tail of  the Lorentz gas is caused by a long sequence of  
backscattering events that lead to a higher than random probability of  return 
of a particle to its starting position. These same events lead to the logarithmic 
divergence of the Burnett coefficient at low density, as indicated in Table I, 
confirming the theoretical prediction of the random walk with a waiting time 
distribution that/~B is one power larger than/3D. Note also, as in the fluid, 
that the coefficient c% is of opposite sign to that of ~D. A plausible cause for 
this behavior is that some particles diffuse for larger distances in passages of  
less than average density, and these are weighted more heavily in the fourth 
moment. 

At higher densities, the value of -/3D decreases to a minimum value of 
4/3 at the percolation density near 0.37, but interestingly enough, the Burnett 
coefficient diverges even beyond the percolation density to n* = 0.477, in a 
region where the diffusion coefficient is zero. The autocorrelation function 
leading to the Burnett coefficient loses its long-time tail at a density near 
0.477, as shown in Table I by ~ = 0. Beyond this density, c~B changes sign, 
the Burnett coefficient converges, but its value is zero. These observations are 
consistent with the prediction of the random walk with a waiting time 
distribution, as shown in Table I by the column labeled/3B'. The waiting time 
distribution also predicts an intermediate region where the diffusion coeffi- 
cient vanishes and the Burnett coefficient diverges. Finally, it is interesting 
to note from Table I, from the various alternate versions of  the Lorentz 
problems investigated, that neither the detailed topology of  the space nor 
the kinematics of the particle motion affects the power law of  the tail 
significantly. 

The effect of these long-time correlations on the nature of  the limiting 
distribution itself also can be deduced from the computer-generated informa- 
tion. The difference in the distribution of  displacement between the two- 
dimensional Lorentz gas and the fluid of  disks is indicated in Fig. 2. In the 
upper part of  the figure, the fourth cumulant divided by the second moment 
squared is shown for the two systems. Even though both fourth cumulants 
diverge, the distribution can still be Gaussian if this ratio vanishes in the long- 
time limit. The ratio test for the Lorentz gas is hence consistent with a Gauss- 
ian distribution in the long-time limit and in the diffusion region, while the 
one for the fluid is not. A part of  the actual distribution is shown in the lower 
part of the plot and this gives more direct evidence of  the Gaussian nature of 
the distribution of displacements for the Lorentz gas. The figure also gives 
evidence that the non-Gaussian displacement distribution for the disk fluid 
is not due to the finite number of particles used in the computer calculations. 
Both plots in Fig. 2 show that fewer particles than predicted by a Gaussian 
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Fig. 2. Comparison between a system of hard disks and a two-dimensional Lorentz gas 
of the fourth cumulant and of the distribution of displacements. The upper plot shows 
K(s) = [(Ax4(s)) -- 3<Ax2(s))2]/3(Ax2(s)) 2 against 1/s, where s is time measured in 
collision times. The lower plot shows the distribution of displacements normalized by a 
Gaussian of the same half-width, that is, the same a = (Ax2(s)) lj2, in the interval 
between 3.1or and 3.3a against 1Is as well. The triangles represent a Lorentz gas at 
n* = 0.I, while the circles correspond to a disk fluid of 1968 particles and the squares of 
4012 particles at an area relative to the close-packed area A/Ao of 3. The error bars are 
indicated, but for the upper figure are smaller than the size of the plotting characters in 
the about 108 collision runs. 

dis t r ibut ion are present at large distances at long times, presumably because 

the coherent vortex mode leads particles back to the center. More  details 

abou t  the evolut ion of  the dis tr ibut ion of displacements will be given in a 

subsequent  publicat ion,  but  it is evident that  the Markovian  approximat ion  

is no t  valid for the rate at which moments  of  the dis tr ibut ion approach their 

l imiting value for even some of  the simplest models for which the l imiting 

dis t r ibut ion is Gaussian.  More  important ly ,  left open is the question whether 

the l imiting dis tr ibut ion is Gauss ian  in three-dimensional  fluids in which 

long-range correlations are also known  to exist. 
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